
Procedures
Procedures are

subroutines●

functions●

Procedures are

module●

internal●

external●

All Fortran 77 procedures are external. It is easy to convert external procedures to module procedures,
which are much easier to use. Next slide

Procedures

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld001.htm [4/12/2000 2:21:16 PM]

The contains Statement
The contains statement marks the beginning of internal or module procedures, which must be placed
just before the end statement.

A module procedure may contain internal procedures, but internal procedures may not contain internal
procedures. Previous slide Next slide

contains

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld002.htm [4/12/2000 2:21:16 PM]

Case Study: Sorting
program sort_3

 implicit none
 real :: n1, n2, n3

 call read_the_numbers
 call sort_the_numbers
 call print_the_numbers

Previous slide Next slide

sorting

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld003.htm [4/12/2000 2:21:16 PM]

contains

subroutine read_the_numbers
 read *, n1, n2, n3
 print *, "Input data n1:", n1
 print *, " n2:", n2
 print *, " n3:", n3
end subroutine read_the_numbers

Previous slide Next slide

sorting2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld004.htm [4/12/2000 2:21:17 PM]

subroutine sort_the_numbers
 if (n1 > n2) then
 call swap (n1, n2)
 end if
 if (n1 > n3) then
 call swap (n1, n3)
 end if
 if (n2 > n3) then
 call swap (n2, n3)
 end if
end subroutine sort_the_numbers

Previous slide Next slide

sorting3

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld005.htm [4/12/2000 2:21:17 PM]

subroutine print_the_numbers
 print *, &
 "The numbers, in ascending order, are:"
 print *, n1, n2, n3
end subroutine print_the_numbers

subroutine swap (a, b)
 real :: a, b, temp
 temp = a
 a = b
 b = temp
end subroutine swap

end program sort_3

Learn more about internal procedures. Previous slide Next slide

sorting4

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld006.htm [4/12/2000 2:21:17 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/internal.html

Host Association
In the subroutines read_the_numbers, sort_the_numbers, and print_the_numbers, the
variables n1, n2, and n3 are known from the main program by host association.

Learn more about host association. Previous slide Next slide

host association

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld007.htm [4/12/2000 2:21:17 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/host.html

Local Variables
In the subroutine swap, the variable temp is local. The dummy arguments a and b are also local. If any
of these names were to be used outside the internal procedure swap, they would be different entities.

Learn more about scope. Previous slide Next slide

local

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld008.htm [4/12/2000 2:21:17 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/scope.html

Exercises
Write parameter statements to set values for a loan principal amount P of $106,500, an annual
interest rate R of 7.25%, and the number of months M equal to 240 in which the loan is to be paid
off. Write a subroutine or function PAY to compute the monthly payment given by the formula:

PAY = [r x P (1+r)M] / [(1+r)M - 1]

where r is the monthly interest. Note that if the annual interest rate is R, the monthly interest rate r
is R/12. Write a program that tests PAY as an internal subroutine.

1.

*Write another subroutine to print out a monthly schedule of the interest, principal paid, and
remaining balance.

2.

Previous slide Next slide

ex1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld009.htm [4/12/2000 2:21:17 PM]

Function Result
Within a function, the result value of the function can be held in a variable whose name is different from
the function name. This is necessary when the function calls itself directly, but may avoid confusion in
other cases. The next example computes

f(x) = (1 + 1/x)x

for values of x equal to 1, 10, 100, ..., 1010 Previous slide Next slide

result1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld010.htm [4/12/2000 2:21:17 PM]

program function_values

 implicit none
 real :: x
 integer :: i

 do i = 0, 10
 x = 10.0 ** i
 print "(f15.1, f15.5)", x, f (x)
 end do

Previous slide Next slide

result2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld011.htm [4/12/2000 2:21:18 PM]

contains

function f (x) result (f_result)

 real :: f_result, x
 integer, parameter :: &
 kind_11 = selected_real_kind (11)

 f_result = &
 (1 + real (1 / x, kind_11)) ** x

end function f

end program function_values

Learn more about functions.
Learn more about subroutines. Previous slide Next slide

result3

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld012.htm [4/12/2000 2:21:18 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/function.html
http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/subroutine.html

Agreement of Arguments
Except for optional arguments the number of actual and dummy arguments must be the same. Except
when keywords are used, the order of the arguments must be the same. The corresponding actual and
dummy arguments should agree in

Type●

Kind●

Shape●

Length (if character)●

These rules are a little more restrictive than required, but observing them eliminates no functionality. The
rules are easy to follow when assumed-shape and assumed-length dummy arguments are used.

Learn more about passing arguments. Previous slide Next slide

agree

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld013.htm [4/12/2000 2:21:18 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/arg.html

Argument Intent
The intended use of a dummy argument can be indicated with the intent attribute. This can provide
some additional compiler checks and aid optimization.

intent (in) Procedure must not change it
intent (out) Must be definable;
 Dummy undefined on entry
intent (inout) Must be definable

Declare the intent for all procedure arguments.

Learn more about argument intent. Previous slide Next slide

intent

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld014.htm [4/12/2000 2:21:18 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/intent.html

Keyword Arguments
A procedure may be called using keyword arguments. When a keyword argument is used or an optional
argument is omitted, all arguments after that one must use keywords, but they may come in any order.
Suppose a subroutine s has four real arguments a, b, c, and d. Then any of the following are equivalent
legal calls to s.

call s (w, x, y, z)
call s (w, x, y, d=z)
call s (w, x, d=z, c=y)
call s (d=z, b=x, c=y, a=w)

Note: for external procedures, you need an interface block to do this.

Learn more about argument keywords. Previous slide Next slide

keyword

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld015.htm [4/12/2000 2:21:18 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/keyword.html

Optional Arguments
A procedure may declare that some arguments are optional. The present intrinsic function is used in
the procedure to determine if the argument has been passed. Note: for external procedures, you need an
interface block to do this.

A rule: In a procedure, an argument that is optional must not present must not be referenced, except to
pass it along to another procedure. The intrinsic function present is used to determine whether or not
an argument is present.

Another rule: Going from left to right, if an actual argument is omitted or is passed using a keyword, all
remaining arguments must be passed using a keyword. Previous slide Next slide

optional1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld016.htm [4/12/2000 2:21:18 PM]

function sum_numbers (from, to)

 integer, intent (in), optional :: from
 integer, intent (in) :: to
 integer :: sum_numbers

 if (present (from)) then
 sum_numbers = (to+from)*(to-from+1)/2
 else
 sum_numbers = to*(to+1)/2
 end if

end function sum_numbers

Previous slide Next slide

optional2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld017.htm [4/12/2000 2:21:18 PM]

This function can be called with the first argument "missing".

program test_sum

 implicit none

 print *, sum_numbers (2, 10)
 print *, sum_numbers (to=10, from=1)
 print *, sum_numbers (to=10)

contains

 function sum_numbers (from, to)
 . . .
 end function sum_numbers

end program test_sum

Learn more about optional arguments. Previous slide Next slide

optional3

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld018.htm [4/12/2000 2:21:18 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/optional.html

program integrate

implicit none

intrinsic sin

print *, integral &
 (sin, a=0.0, b=3.14159, n=100)
print *, integral (sin, a=0.0, b=3.14159)
print *, integral (b=3.14159, a=0.0, f=sin)
print *, integral (b=3.14159, f=sin)

contains

Previous slide Next slide

optional4

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld019.htm [4/12/2000 2:21:19 PM]

function integral (f, a, b, n) &
 result (integral_result)
! Calculates a trapezoidal approximation
! to an area using n trapezoids.

! The region is bounded by lines x = a,
! y = 0, x = b, and the curve y = f (x).

 real :: integral_result, f
 real, intent (in), optional :: a
 real, intent (in) :: b
 integer, intent (in), optional :: n
 real :: h, sum, aa
 integer :: i, nn

Previous slide Next slide

optional5

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld020.htm [4/12/2000 2:21:19 PM]

 if (present (a)) then
 aa = a
 else
 aa = 0.0
 end if

 if (present (n)) then
 nn = n
 else
 nn = 100
 end if

Previous slide Next slide

optional6

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld021.htm [4/12/2000 2:21:19 PM]

 h = (b - aa) / nn
! Calculate the sum f(a)/2+f(a+h)+...
! +f(b-h)+f(b)/2
! Do the first and last terms first
 sum = 0.5 * (f (aa) + f (b))
 do i = 1, nn - 1
 sum = sum + f (aa + i * h)
 end do

 integral_result = h * sum

end function integral

end program integrate

Previous slide Next slide

optional7

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld022.htm [4/12/2000 2:21:19 PM]

Interface Blocks
If the function sum_numbers is to be an external function, the calling program must contain an
interface block to describe the arguments and the type of the result.

interface
function sum_numbers (from, to)
 integer, intent (in), optional :: from
 integer, intent (in) :: to
 integer :: sum_numbers
end function sum_numbers
end interface

Previous slide Next slide

interface1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld023.htm [4/12/2000 2:21:19 PM]

An interface block is also used to describe a dummy argument that is a procedure. Thus, f in the function
integral should be declared:

interface
 function f (x) result (f_result)
 implicit none
 real, intent (in) :: x
 real :: f_result
 end function f
end interface

Previous slide Next slide

interface2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld024.htm [4/12/2000 2:21:19 PM]

If the function integral is to be an external function, the calling program must contain an interface
block for it.

interface
function integral (f, a, b, n) &
 result (integral_result)
 implicit none
 real :: integral_result
 interface
 function f (x) result (f_result)
 implicit none
 real, intent (in) :: x
 real :: f_result
 end function f
 end interface
 real, intent (in), optional :: a
 real, intent (in) :: b
 integer, intent (in), optional :: n
end function integral
end interface

Learn more about interface blocks. Previous slide Next slide

interface3

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld025.htm [4/12/2000 2:21:19 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/interface.html

The following ten situations require explicit interfaces for external procedures:

optional arguments●

array-valued functions●

pointer-valued functions●

character-valued functions whose lengths are determined dynamically●

assumed-shape dummy arguments (needed for efficient passing of array sections)●

Previous slide Next slide

interface4

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld026.htm [4/12/2000 2:21:19 PM]

dummy arguments with the pointer or target attribute●

keyword actual arguments (which allow for better argument identification and order independence
of the argument list)

●

generic procedures (calling different procedures with the same name)●

user-defined operators (which is just an alternate form for calling certain functions)●

user-defined assignment (which is just an alternate form for calling certain subroutines)●

Previous slide Next slide

interface5

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld027.htm [4/12/2000 2:21:20 PM]

Exercise
Modify the loan calculation subroutine so that it has three dummy arguments R, P, and M and the
number of months M is optional and is 240 if not present. Test it with

call pay_calc (R=7.25, P=106500.00)

Previous slide Next slide

1.

ex2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld028.htm [4/12/2000 2:21:20 PM]

Pure Procedures (F95)
In order for computational results to be determinate, functions must not have side effects such as
changing values in common or writing intermediate results to a file. Pure procedures are intended to
disallow the side effects that impact determinancy. User-defined pure procedures may be used in
specification expressions.

A function is declared pure by putting the keyword pure on the function statement.

pure function f(x) result(the_answer)

Learn more about pure procedures. Previous slide Next slide

pure1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld029.htm [4/12/2000 2:21:20 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/pure.html

All of the intrinsic functions and the mvbits intrinsic subroutine are pure. The prefix specification
pure in a user-defined function or subroutine statement specifies that procedure to be pure. Previous
slide Next slide

pure2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld030.htm [4/12/2000 2:21:20 PM]

There are four contexts in which a procedure must be pure:

a function referenced in a forall construct●

a function referenced in a specification statement●

a procedure that is passed as an actual argument to a pure procedure●

a procedure referenced in the body of a pure procedure (including those referenced by a defined
operator or defined assignment)

●

Previous slide Next slide

pure3

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld031.htm [4/12/2000 2:21:20 PM]

Elemental Procedures (F95)
The purpose of elemental procedures is to allow the programmer to define a procedure with scalar
arguments and the elemental keyword that can be called with array arguments of any rank. An elemental
procedure has all scalar dummy arguments; in addition, an elemental function delivers a scalar result.
The actual arguments may be arrays of any rank, as long as all of the actual arguments in a given call are
in general conformable. The result of an elemental call having array actual arguments is the same as
would have been obtained if the procedure had been applied separately, in any order (including
simultaneously), to the corresponding elements of each argument. The prefix specification elemental
in a user-defined function or subroutine statement specifies that procedure to be elemental. Previous slide
Next slide

elemental1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld032.htm [4/12/2000 2:21:20 PM]

elemental function vip_calc(x, y)
 real :: vip_calc
 real, intent(in) :: x, y
 . . .
end function vip_calc

! A call to vip_calc with scalar arguments
 x = vip_calc(1.1, 2.2)

! The result of this call is an array
! conformable with a(1:n) and b(1:n).
 ax = vip_calc(a(1:n), b(1:n))

Learn more about elemental procedures. Previous slide Next slide

elemental2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld033.htm [4/12/2000 2:21:20 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/elemental.html

Scope
The scope of a name is the set of lines in a Fortran program where that name may be used and refer to the
same variable, procedure, or type.

The scope of a variable or type name declared in a main program, module, module procedure, or external
procedure extends from the first statement to the end statement or to the contains statement, if there
is one.

Learn more about scope. Previous slide Next slide

scope

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld034.htm [4/12/2000 2:21:20 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/scope.html

Any name that is declared is known by host association in all procedures contained in the one in which it
is declared, that is, in all procedures following the contains statement. However, the name declared is
not known in any internal or module procedure in which the name is redeclared.

A name declared in an internal procedure has scope extending only from the beginning to the end of that
procedure, not to the program or procedure that contains it, nor to any other internal procedure. Previous
slide Next slide

scope2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld035.htm [4/12/2000 2:21:21 PM]

program p
 implicit none
 integer :: a, b
 . . .
contains

subroutine s
 real b
 . . .
 print *, a, b
 . . .

Previous slide Next slide

scopeex

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld036.htm [4/12/2000 2:21:21 PM]

In the subroutine, a is the integer variable declared in the main program; it is known in the subroutine by
host association because it is not redeclared. However, it is a real value that is printed for b, which is the
b declared in the subroutine s.

A similar rule applies to implicit statements. The implicit typing (including none) is passed along to
any internal or module procedures.

The name of an internal procedure, the necessary information about its arguments, as well as the type of
its result variable if it is a function, are considered as declared in the containing program or procedure,
and so they are known throughout the containing program and all other internal procedures of the
containing program. The containing program or procedure therefore can call an internal procedure, as can
any other internal procedure of the same containing procedure. Previous slide Next slide

scopeex2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld037.htm [4/12/2000 2:21:21 PM]

The save Attribute
Variables local to a procedure do not retain their values when the procedure is exited unless they have the
save attribute. A variable that is initialized is also saved, but it is a good idea to give something the
save attribute explicitly when it is to be saved.
The variable counts records the number of times the subroutine is called:

subroutine subr ()

 integer, save :: counts = 0

 . . .

 counts = counts + 1

 . . .

end subroutine subr

Learn more about the save attribute. Previous slide Next slide

save

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld038.htm [4/12/2000 2:21:21 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/save.html

Recursion
_		

_|_______________|___________|_____________________|_________

Problem: move the disks from the left post to the right post, obeying the rules:

Disks must be moved from post to post one at a time.1.

A larger disk may never rest on top of a smaller disk on the same post.2.

Previous slide Next slide

hanoi1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld039.htm [4/12/2000 2:21:21 PM]

The algorithm has 3 steps.

Legally move the top n-1 disks from the starting post to the free post.1.

Move the largest disk from the starting post to the final post.2.

Legally move the n-1 disks from the free post to the final post.3.

Previous slide Next slide

hanoi2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld040.htm [4/12/2000 2:21:21 PM]

program test_hanoi

 implicit none
 integer :: number_of_disks

 read *, number_of_disks
 print *, "Input data number_of_disks:", &
 number_of_disks
 print *
 call hanoi (number_of_disks, 1, 3)

contains

Previous slide Next slide

hanoi3

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld041.htm [4/12/2000 2:21:22 PM]

recursive subroutine hanoi (number_of_disks, &
 starting_post, goal_post)

 integer, intent (in) :: &
 number_of_disks, starting_post, goal_post
 integer :: free_post
 integer, parameter :: all_posts = 6

 if (number_of_disks > 0) then
 free_post = &
 all_posts - starting_post - goal_post
 call hanoi (number_of_disks - 1, &
 starting_post, free_post)

 print *, "Move disk", number_of_disks, &
 "from post", starting_post, &
 "to post", goal_post
 call hanoi (number_of_disks - 1, &
 free_post, goal_post)
 end if
end subroutine hanoi

end program test_hanoi

Learn more about recursion. Previous slide Next slide

hanoi4

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld042.htm [4/12/2000 2:21:22 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/recursion.html

run test_hanoi

 Input data number_of_disks: 4

 Move disk 1 from post 1 to post 2
 Move disk 2 from post 1 to post 3
 Move disk 1 from post 2 to post 3
 Move disk 3 from post 1 to post 2
 Move disk 1 from post 3 to post 1
 Move disk 2 from post 3 to post 2
 Move disk 1 from post 1 to post 2
 Move disk 4 from post 1 to post 3
 Move disk 1 from post 2 to post 3
 Move disk 2 from post 2 to post 1
 Move disk 1 from post 3 to post 1
 Move disk 3 from post 2 to post 3
 Move disk 1 from post 1 to post 2
 Move disk 2 from post 1 to post 3
 Move disk 1 from post 2 to post 3

Previous slide Next slide

hanoi5

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld043.htm [4/12/2000 2:21:22 PM]

include Line
An include line contains the keyword include and a character literal constant. The meaning of the
constant is not specified, but probably is a file name on most systems. The include line is replaced by
included text, such as the contents of a specified file.

include "my_definitions.inc"

Although the include line might be useful in some simple cases, the use of modules is recommended
instead.

Learn more about the include line. Previous slide Next slide

include

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld044.htm [4/12/2000 2:21:22 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/include.html

Exercise
Write a recursive function bc (n, k) to compute the binomial coefficient

 (n)
 (k)

1.

Previous slide

ex3

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod3/slides/tsld045.htm [4/12/2000 2:21:22 PM]

	hpc.mil
	Procedures
	contains
	sorting
	sorting2
	sorting3
	sorting4
	host association
	local
	ex1
	result1
	result2
	result3
	agree
	intent
	keyword
	optional1
	optional2
	optional3
	optional4
	optional5
	optional6
	optional7
	interface1
	interface2
	interface3
	interface4
	interface5
	ex2
	pure1
	pure2
	pure3
	elemental1
	elemental2
	scope
	scope2
	scopeex
	scopeex2
	save
	hanoi1
	hanoi2
	hanoi3
	hanoi4
	hanoi5
	include
	ex3

